top of page

NSB MOSQWELL

Nanoscale body light-emitting transistor

MOSQWELL (Metal-Oxide-Silicon Quantum WELL) is a MOSFET concept that uses quantum wells to overcome silicon’s indirect bandgap and allow light emission. The quantum well consists of a recessed ultrathin silicon layer, obtained by a gate-recessed channel and sandwiched between two oxide layers. The device’s coupled optical and electrical properties have been simulated for channel thicknesses varying from 2 to 9 nm. The results show that this device can emit NIR radiation in the 1 to 2 μm range, compatible with the optical networking spectrum. The emitted light intensity can be electrically controlled through the drain-source voltage, while the peak emission wavelength depends mostly on the channel thickness and to a lesser extent on the drain-source voltage. Moreover, the location of the radiative recombination source inside the channel, responsible for the light emission, is also controllable through the applied voltages.

Articles

A. Karsenty, A. Saar, N. Ben-Yosef, J. Shappir, “Enhanced electroluminescence in silicon-on-insulator metal-oxide-semiconductor transistors with thin silicon layer”, Appl. Phys. Letters 82(26), 4830–4832, 2003. doi: https://aip.scitation.org/doi/10.1063/1.1587877


A. Karsenty, A. Chelly, "A Comparative Study of Electrical Transport Phenomena in Ultrathin vs. Nanoscale SOI MOSFETs Devices", International Journal of Electrical and Computer Engineering 7(1), 66-70, 2013. doi: https://publications.waset.org/17367/pdf

A. Karsenty, A. Chelly, "Modeling of the Channel Thickness Influence on Electrical Characteristics and Series Resistance in Gate-Recessed Nanoscale SOI MOSFETs", Active and Passive Electronic Components, Volume 2013, Article ID 801634, 10 pages. doi: http://dx.doi.org/10.1155/2013/801634


A. Karsenty, A. Chelly, "Comparative study of NSB and UTB SOI MOSFETs Characteristics by Extraction of Series Resistance", Solid-State Electronics 91, 28-35, 2014. doi: http://dx.doi.org/10.1016/j.sse.2013.09.003

A. Karsenty, A. Chelly, "Influence of Series Massive Resistance on Capacitance and Conductance Characteristics in Gate-recessed Nanoscale SOI MOSFETs", Active and Passive Electronic Components, Volume 2013, Article ID 813518, 11 pages. doi: http://dx.doi.org/10.1155/2013/813518


A. Karsenty, A. Chelly, "Application, Modeling and Limitations of Y-function based Methods for Massive Series Resistance in Nanoscale SOI MOSFETs", Solid-State Electronics 92, 12-19, 2014. doi: http://dx.doi.org/10.1016/j.sse.2013.10.020

A. Karsenty, A. Chelly, “Modeling of the Transfer Characteristics for High Series Resistance in Nanoscale FD SOI MOSFET Devices”, International J. of Eng. Innovation & Research 3(1), 28-34, 2014.

doi: http://www.ijeir.org/administrator/components/com_jresearch/files/publications/IJEIR_790_Final.pdf


A. Karsenty, A. Chelly, "Y-Function Analysis of the Low Temperature Behavior of Ultrathin FD SOI MOSFETs", Active and Passive Electronic Components, Volume 2014 (2014), Article ID 697369, 10 pages. doi: http://dx.doi.org/10.1155/2014/697369


A. Karsenty, A. Chelly, "Investigation of the Low-Temperature Behavior of FD-SOI MOSFETs in the Saturation Regime using Y and Z functions", Active and Passive Electronic Components, Volume 2014 (2014), Article ID 782417, 8 pages. doi: http://dx.doi.org/10.1155/2014/782417


A. Karsenty, A. Chelly, "Usage and limitation of standard mobility models for TCAD simulation of nano-scaled FD-SOI MOSFETs”, Active and Passive Electronic Components, Volume 2015, Article ID 460416, 9 pages. doi: http://dx.doi.org/10.1155/2015/460416


A. Karsenty, A. Chelly, “Anomalous Kink Effect in Low Dimensional Gate-Recessed Fully Depleted SOI MOSFETs at Low Temperature”, NANO: Brief Reports and Reviews 10(7), 1550093 (4 pages), 2015. doi: http://dx.doi.org/10.1142/S1793292015500939


A. Karsenty, A. Chelly, “Anomalous DIBL Effect in Fully Depleted SOI MOSFETs Using Nanoscale Gate-Recessed Channel”, Active and Passive Electronic Components, Volume 2015 (2015), Article ID 609828, 5 pages. doi: http://dx.doi.org/10.1155/2015/609828


A. Zev, A. Karsenty, A. Chelly, Z. Zalevsky, “Nanoscale Silicon-On-Insulator Photo-Activated Modulator Building Block for Optical Communication”, IEEE Photonics Technology Letters 28(5), 569-572, 2016. doi: https://ieeexplore.ieee.org/document/7336532


M. Bendayan, R. Sabo, R. Zolberg, Y. Mandelbaum, A. Chelly, A. Karsenty, "Electrical control simulation of near infrared emission in SOI-MOSFET quantum well devices," Journal of Nanophotonics 11(3), 036016 (2017). doi: http://dx.doi.org/10.1117/1.JNP.11.036016


M. Bendayan, Y. Mandelbaum, G. Teller, A. Chelly, and A. Karsenty, “Probing of Quantum Energy Levels in Nanoscale Body SOI-MOSFET: Experimental and Simulation Results”, J. of Appl. Phys. 124, 124306 (2018). doi: https://aip.scitation.org/doi/10.1063/1.5041857


M. Bendayan, A. Chelly and A. Karsenty, “Quantum Physics Applied to Modern Optical MOS Transistor”, Opt. Eng. 58(9), 097106 (2019). doi: https://doi.org/10.1117/1.OE.58.9.097106


A. Karsenty, A. Chelly, "Nanoscale Thick FDSOI MOSFETs: A Simple Model of Abnormal Electrical Behavior at Low Temperature", 2014 IEEE 28th Convention of Electrical and Electronics Engineers in Israel (IEEEI), Eilat, 3-5 Dec. 2014, pages 1-5. doi: https://ieeexplore.ieee.org/document/7005898


A. Karsenty, A. Chelly, “Design, Development and Characterization of Nanoscale SOI-MOSFET Devices towards future Optical Communication between blocks and Chips”, Proceedings of the 4th International Symposium on Energy Challenges and Mechanics (ECM4) – Working on Small Scales, Aberdeen, Scotland, UK, 11-13 August 2015.


Roi Zolberg, Roi Sabo, Avraham Chelly, Avi Karsenty, “Development, electrical, and optical characterization of nanoscale FD-SOI MOSFET devices based on quantum well structure for optical communication between chips and internal blocks”, SPIE Optics and Photonics 2015 Conference Proceedings, Session: “Nanoengineering: Fabrication, Properties, Optics, and Devices XII”, [9556-13], San Diego, USA, 9-13 August 2015.


M. Bendayan, A. Chelly, A. Karsenty, “'Modeling and Simulations of MOSQWell Transistor future Building Block for Optical Communication”, 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE) Proceedings, pages 1-5, Eilat 16-18 Nov. 2016. doi: https://ieeexplore.ieee.org/document/7806052, 10.1109/ICSEE.2016.7806052


M. Bendayan, R. Sabo, R. Zolberg, Y. Mandelbaum, A. Chelly, A. Karsenty, “Dual-mode MOS SOI nanoscale transistor serving as a building block for optical communication between blocks”, Proc. SPIE 10112, Photonic and Phononic Properties of Engineered Nanostructures VII, 101122A (February 20, 2017). doi: https://doi.org/10.1117/12.2252681


M. Bendayan, Y. Mandelbaum, G. Teller, A. Chelly, and A. Karsenty, “Probing of Quantum Energy Levels in Nanoscale Body SOI-MOSFET: Experimental and Simulation Results”, J. of Appl. Phys. 124, 124306 (2018). doi: https://aip.scitation.org/doi/10.1063/1.5041857


M. Bendayan, A. Chelly and A. Karsenty, “Quantum Physics Applied to Modern Optical MOS Transistor”, Opt. Eng. 58(9), 097106 (2019). doi: https://doi.org/10.1117/1.OE.58.9.097106


Avi Karsenty, “Overcoming Silicon Limitations in Nanophotonic Devices by Geometrical Innovation: Review (Invited Article)”, IEEE Photonics Journal 15(4), 1-19 (2023).

Jerusalem College of Technology

21 Havaad Haleumi St

Jerusalem 9116001, Israel

Tel: +972-2-6751140

  • ReaserchGate
  • Google Scholar
  • LinkedIn
bottom of page